
International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 56
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Mitigating Snoop-Forge-Replay Attack by
Integrating Text-Based and Language-Based
Traits with the Keystroke Verification System

S.Sridhar

Abstract— A new attack called the snoop-forge-replay attack is presented on keystroke-based continuous verification systems. The
snoop-forge-replay is a sample-level forgery attack and is not specific to any particular keystroke-based continuous verification method or
sysem. It can be launched with easily available keyloggers and APIs for keystroke synthesis. Our results ffrom 2460 experiments show
that: 1)the snoop-forge-replay attacks achieve alarmingly high error rates compared to zero-effort imposter attacks, which have been the
de facto standard for evaluating keystroke-based continuous verification systems; 2)four state-of-the –art verification methods, three types
of keystroke latencies, and 11 matching-pair settings(a key parameter in continuous verification with keystrokes) that is examined here
were suspectible to the attack; 3)the attack is effective even when as low as 20 to 100 keystrokes were snooped to create forgeries.

Index Terms— Biometrics, Continuous verification, Keystroke dynamics, Snooping, Spoof attacks.

——————————  ——————————

1 INTRODUCTION
EYSTROKE DYNAMICS, or typing dynamics, is the de-
tailed timing information that elaborately describes exact-
ly when each key was pressed and when it was released

as a person is typing at a computer keyboard. One of the be-
havioral biometric of Keystroke Dynamics uses the manner
and rhythm in which an individual types characters on a key-
board or keypad. The keystroke rhythms.of a user are meas-
ured to develop a unique biometric template of the users typ-
ing pattern for future authentication.Raw measurements
available from almost every keyboard can be stored even
recoreded to determine Dwell time (timing of key pressed)
and Flight time (the time between "key up" and the right next
"key down"). The saved keystroke timing data is then pro-
cessed through a unique and specific neural algorithm, which
determines a primary pattern for future comparison.
Similarly, vibration information may be used to create a pat-
tern for future use in both identification and authentication
tasks.Data needed to analyses keystroke dynamics is obtained
by keystroke logging. Normally, all that is reversed when log-
ging a typing duration is the sequence of characters corre-
sponding to the order in which keys were pressed and timing
information is discarded. When reading email, the receiver
cannot tell from reading the phrase "I saw 3 zebras!" whether:
1) that was typed rapidly or slowly, 2) the sender used the left
shift key, the right shift key, or the caps-lock key to make the
"i" turn into a capitalized letter "I",3) the letters were all typed

at the same pace, or if there was a long pause before the letter
"z" or the numeral "3" while you were looking for that letter, 4)

the sender typed any letters wrong initially and then went
back and corrected them, or if they got them right the first
time.

2 BIOMETRIC FUNCTIONING.
2.1 Basic Stage
Keystroke Dynamics technology extracts and measures the
distinctive characteristics found by typed sequences of charac-
ters, and creates a statistically unique signature from the typ-
ing patterns of a person. These distinctive features include the
duration for which keys are held during the session and the
elapsed time between successive keystrokes.

2.2 Final Stage
Scientific research has proven that these Keystroke Dynamics
is always completely reliable and accurate. A National Bureau
of Standards (NBS) study concluded that keystroke biometric
authentication achieved at least 98% accuracy. From then, the
technology of keystroke biometric has further improved to the
future level that is comparative and competitive to other bio-
metric solutions such as fingerprint and voiceprint and other
biometric methods.

2.3 Nothing Extra or Type at Logon
With all other authentication methods, you are always asked
to provide some more unique codes. With Type Sense, you
will be asked to type what you always enter at logon: your
username and password. Type Sense is completely transpar-
ent to the users.

2.4 Flexible Enrolment
Type Sense can be enrolled at that cureent moment immedi-
ately in the registration process by intensive training, or grad-
ually over a period of time by adaptive learning.
Each of the user will be exactly loaded with their latency and
their username when every new users are entering for their

K

————————————————
S.Sridhar, is currently pursuing masters degree program in computer sci-
ence engineering in Anna University, India, Mobile-904739973. E-mail:
ssridhar.ooty@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 57
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

first logon.

3BACKGROUND
Here I illustrate continuous user verification with key-
strokes.Details follow.

Keystroke Latencies:
Widely used latencies in the literature are: 1) key hold latency—
is the time between press and release of the same key, 2) key
press latency—is the time between press of a key and press of
the next key, and 3) key interval latency—is
the time between the release of a key and press of the next key.
Experimenting with key hold, key interval, and key press la-
tencies.

Template:
A template stores the keystroke signatures of a user. I used
26-by-26 matrix as the template. Each cell corresponds to an
English alphabet pair.
For example, with key press latencies, if cell “ ” has, it means
that the user(during enrollment) typed thrice with 110 ms, 90
ms, and 100 ms delay between the press of and the press of
and the meanis calculated for all the delay is 100 ms with 10
ms standard deviation. Unlikekey press and interval latencies,
a key hold latency by definition is associated with a letter (and
not letter pair). Because this template holds only letter pairs,
when used key hold latencies, each cell stored the key hold
latencies of the first letter of it letter pair (e.g., cell “ ” stored
key hold latencies of only when the next letter typed is). The
template is homogeneous, meaning it stores only one type of
latencies (i.e., either key hold, interval, or press).

Outlier Detection:
 Latency values that markedly deviates from majority of the
latency values of a user which can be distorted the typing
profile of a user, especially if the profile contains statistics sen-
sitive to outliers (e.g., mean). Several studies (e.g., [2], [10], and
[11]) performed outlier detection and reported performance
gains. Here with this experiments use of a distance based out-
lier detection method that worked well in an earlier work [11].

Overview of Continuous Verification of Keystroke:
Matching Pairs: Because there are no constraints on what a user
types during continuous verification, some keystrokes typed
during the verification phase may not have reference signa-
tures in the template. This can happen because the enrollment
text used for building the template may not have all the letter

pairs present in the 26-by-26 matrix. This problem can be re-
solved by performing verification using letter pairs that are
common to the template and the verification text. Following to
thesecommon letter pairs as matching pairs, used to denote the
number of matching pairs.

4SNOOP-FORGE REPLAY ATTACK
The attack presented in this paper falls under the generative
attacks on behavioral biometric systems.
Here, the attacker secretly steals a victim’s keystroke timing
information. For example, if the victim typed the text“this is
snooped text”, the attacker records a seriesof timestamps—
(time when was pressed), (time whenwas released), , andso
on.An attacker can snoop a victim’s keystroke timing infor-
mationusing a hardware keylogger and even using some of
the software keylogger. Software keyloggers have become the
most popular forms of keyloggers because they can be easily
developed, are easily available,2 and can be deployed from
remote locations onto a victim’s machine (e.g., using trojans
and spyware). We used keystroke data collected from 150 par-
ticipants during the period 13–21 October 2009 as snooped
keystrokes (see Table I and Section VI-A for details). This data
was collected using a software keylogger developed in C#.
The snooped keystrokes were used to attack templates that
were built from keystrokes collected approximately six
months afterthe snooped keystrokes.

5CREATING A KEYSTROKE FORGERY
Creation of a keystroke forgery of a victim user. A forgery has
two parts: 1) “dummy” text and 2) a series of latencies be-
tween the press and release of letters in the dummytext from
the selected papers in Wikipedia . For some clarification, a
forgery of any large document can have the dummy text“this
is dummy text”. The key hold and interval values for this text
come from the snooped keystroke latencies of .The goal of
the emulator is to use the snooped latencies to inject key press
and release events for the dummy text in a way that the verifi-
er thinks that it is the victim .who is typing the dummy text.

The emulator algorithm, gives the steps to forge and replay a
victim user ’s typing pattern asfollows:

Algorithm 1: Replay the forgery of user
Input: Dummy text file containing 497,184 words from coca
and text 20 Wikipedia pages. Key hold(e.g., , ,etc.)
and key interval(e.g.,. , ,etc.) latencies computed
from ’s snooped keystrokes. Here, “ ” denotes the
snooped key hold latencyof x when the next character typed is
y and “ ” denotes the snoopedkey interval latency between
characters x and y.
Output: A replay of user ’s keystroke forgery.
1 Initialization:
2 n ← Number of characters in the dummy text file.
3 dummyTextArr[0:n -1] ← Copy each character in the dummy
text file into the array;
 /* Eachcell in the dummyTextArr holds a character in the dummy

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 58
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

text file*/
4 dummyIndex←0;/*Index to the first character in the dummyTex-
tArr*/
5 trap_counter ← 0:/*Counter to ensure that character pairs in the
dummy text that not do
have corresponding snooped latencies do not available even after
traversing 500
charactersin the dummy text, then character pairs is reset to a ran-
dom character in
dummyTextArr (Line 25)*/
6 first ← Ø;/* A variable to store first character.*/
7 second ← Ø;/* A variable to store second character.*/
8 startTime ← System time at the start of the program;
9 currentTime ← Current system time:
10 while(currentTime – startTime ≤ P hours)/*We set P to
24.*/do
11 first← dummyTextArr[dummyIndex];
12 second← first;
13 whiledummyIndex<n and trap_counter≤500
 do
14if (and) is snooped /*checks if letter
pair from the dummy
text has corresponding snooped latencies.*/ then

15 ← ;

← ;/*Forge latencies. “KH” and “KI”
denote latencies in
 a forge.*/
16 replay
 (first, ,);
 /*Replay dummy text by generating key press and
release events of first when second
 is the next character*/
17 first ←second; trap_counter←0;
18 end
19 else
20 trap_counter←trap_counter+1;
21 end
22 dummyIndex← dummyIndex+1;
23 second ← dummyTextArr[dummyIndex];
24 end
25 dummyIndex←Reset to a random cell of dummyTex-
tArr;
26 currentTime← Current system time;
 trap_counter←0;
end

6 REPLAYING A FORGERY OF VICTIM

Keystroke Emulator:
 The developed a keystroke emulatorthat injects synthetic key
press and release events. We programmedthe emulator in
Visual C++ and used SendInputAPI. The goal of the emulator
is to use the snooped latencies to inject key press and release
events for the dummy text in a way that the verifier thinks
that it is the victim who is typing the dummy text. The emu-
lator algorithm, referred as “Algorithm 1”, gives the steps to

forge and replay a victim user ’s typing pattern. At this
point, emphasize that Algorithm 1 is one of the many possible
ways to generate snoop-forge-replay attacks.While maintain-
ing the general idea of snooping and replaying keystrokes, the
attacker can evolve Algorithm 1 in severalways. For example,
the attacker can make them stop working heuristics to im-
putemissing latency values or snoop only selected latencies
from a victim, to generate desired text or system commands.

6.1Keystroke Data Collection
The participant to type two types of free text:1) copy text—each
participant typed several paragraphs of English text from a
document provided by us; and 2) selftext—participant had to
compose and type text. The participants were allowed to make
spelling mistakes, typographical errors and if they chose,
could correct them using Backspace or Delete keys. The key-
stroke data collection software provided GUI (e.g.,ext boxes,
buttons, and character counters) for typing copy and self texts.
Each participant was required to type at least 1800 characters
of copy text. For typing copy text, we provided paper copies of
five well known sample texts to the participants. A participant
received one of the five sample texts randomly.

Copy versus self text—
Typing self text is a exact representation of a user’s typing
process. However, conducting pilot trials in laboratory before
undertaking full-scale data collection and observed that typing
1200–1800 characters of self text took considerably more time
than typing copy text of the same length and in most cases
fatigued participants. To achieve a trade-off between partici-
pation time and obtaining realistic typing samples, choose to
collect a mixture of copy and self texts.

6.1Zero Effect Imposter Attack

Extracting Verification Attempts:
 From a user’s typing sample, extracted verification attempts
as follows: 1) read the text in the order it was typed and ex-
tract latencies until matching pairs are obtained; 2) present
the matching pairs to the verifier to obtain a verification score
(this constitutes one verification attempt); 3) read the text
from the point where it was stopped in Step 2 until matching
pairs are obtained; and 4) repeat steps 2 and 3 until the text
ends. This procedure partitions the text into contiguous, non-
overlapping, variable-length windows, each containing exact-
ly matching pairs. Each window corresponds to one verifica-
tion attempt.
While experimenting with values: 20, 40, 60, 80, 100, 120,
150,300, 350, 500, and 750.Relative (R) and Absolute (A) Verifiers
[1]: Given a verification attempt, “R” verifier outputs a score
as follows. Two arrays and are constructed. contains the
matching pairs ranked in ascending order of their correspond-
ing mean latencies (in the template). contains the matching
pairs ranked in ascending order of their latencies in the verifi-
cation attempt. The “R” measure between and is computed as
the normalized array disorder between. The “R” measure lies
between 0 and 1, 0 (or 1) indicates a perfect match (or mis-
match) between the verification attempt and the template. The
“R” measure is given as where the maximum disorder of an

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 59
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

array of elements is given by: , if is even; else if is odd. The
“A” measure verifier outputs a score as follows: for each
matching pair, two latency values are considered: 1) the aver-
age latency value stored in the template and 2) the average
latency value in verification attempt. The larger of the two is
divided by the smaller. A matching pair becomes valid if the
ratio falls between 1 and a threshold (after some trial and error
experiments, we choose 1.45 as threshold).

The “A” measure of 0 (or 1) provides a perfect match (or mis-
match) between the verification system and the template.
Each of the keystrokes are calculated as per the system de-
signed.

7PREVALENCE ANALYIS
7.1 Misspelling analysis:
This calculates the rate of Misspelt word when the user types
the text wrongly. This performs the step when the number of
times each of the words whose misspellings are being identi-
fied was found in the entire text body is counted and record-
ed. The attacking can be found then this recorded rate match
with the original latency of the text. The attack can be found
and mitigated when the calculated score does not match with
the original record of data .Secondly The Type of word for
which user has latency outliers can be verified .This can be
done by estimating the keystroke press and release for Nor-
mal and outlier user. Thirdly The forgers digraph to be de-
tected and verified. This can be done by Extracting Digraph
Latencies from the snooped keystroke timing. The mean and
standard deviation of the digraph is evaluated. If These mean
and Standard deviation of this digraph is not found in the
template Then the required user is said to be forged one.

Prevalence analysis is given by Number of words is indi-
rectly proportional to the exact number of words in the typed
column.

8EQUAL ERROR RATE OR CROSSOVER ERROR RATE
The rates at which both accept and reject errors are equal. The
value of the EER can be easily obtained from the ROC curve.
The EER is a quick way to compare the accuracy of devices
with different ROC curves. In general, the device with the
lowest EER is most accurate.

Integratingtext-based and language-based traits into the
verificationprocess, such as—1) the rate at which a user mis-
spells words orrepeats letters, 2) type of words for which user
has latency outliers,3) how the user revises text i.e., revision
pattern, and so on,the impact of the attack can be mitigated. In
future work, will pursue the problem of designing keystroke
based verificationsystems that are resilient to snoop-forge-
replay attacks.

9CONCLUSION
A new sample-level attack called “snoop-forge-replay” attack

that synthesizes keystroke forgeries using timing information
stolen from victim users has been presented. The results from
2640 experiments (involving 150 users,four state-of-the-art
continuous verifiers, three types ofkeystroke latencies, and 24
attack configurations) reveal that snoop-forge-replay attacks
are very effective in increasing EERs. With 20 to 1200 snooped
keystrokes, the average snoop-forge-replay attack EERs were
between 0.487 and0.912. In comparison, the baseline EERs
with zero-effort impostor attacks were between 0.03 and 0.285
(i.e., the attack increased EERs from between 69.33 to 2730.55
%). Theresults additionally show that effective keystroke for-
geries canbe created with a) as low as 20 to 100 characters of
snooped text and b) old legacy keystroke timing information.
The main reason for the success of snoop-forge-replay attackis
that keystroke based continuous verification methods solely
rely on user’s latency information, which can be easily forged
has been demonstrated.

ACKNOWLEDGMENT
I, author of this work, wish to thank K.Manikandan, who
guided and provided immense support throughout. This work
was supported in part by a grant from Mrs.Akhila, who taught
me biometrics deep and clean.

REFERENCES
[1] D. Gunetti and C. Picardi, “Keystroke analysis of free

text,” ACM Trans. Inf. Syst. Secur., vol. 8, no. 3, pp. 312–
347, Aug. 2005.

[2] T. Shimshon, R. Moskovitch, L. Rokach, and Y. Elovici,
“Continuous verification using keystroke dynamics,” in
Proc. Int. Conf. ComputationalIntel. and Security, Los Alami-
tos, CA, USA, 2010, pp. 411–415.

[3] U. Uludag and A. K. Jain, “Attacks on biometric systems:
A case studyin fingerprints,” in Proc. SPIE Security, Ste-
ganography and WatermarkingofMultimedia Contents VI, Jan.
2004, vol. 5306, pp. 622–633.

[4] R. Maxion and K. Killourhy, “Keystroke biometrics with
number-pad input,” in Proc. 2010 IEEE/IFIP Int. Conf. De-
pendable Systems andNetworks (DSN), pp. 201–210, 28 2010-
July 1 2010.

[5] L. Ballard, D. Lopresti, and F. Monrose, “Forgery quality
and its implications for behavioral biometric security,”
IEEE Trans. Syst., Man,Cybern. B, vol. 37, no. 5, pp. 1107–
1118, Oct. 2007.

[6] L. Ballard, D. Lopresti, and F. Monrose, “Evaluating the
security of handwriting biometrics,” in Proc. 10th Int.
Workshop on the Foundationsof Handwriting Recognition,
2006, vol. 15, pp. 461–466.

[7] L. Ballard, F. Monrose, and D. Lopresti, “Biometric au-
thentication revisited: Understanding the impact of
wolves in sheep’s clothing,” in Proc. 15th Conf. USENIX Se-
curity Symp., California, USA, 2006, vol.15.

[8] D. Stefan, X. Shu, and D. Yao, “Robustness of keystroke-
dynamics based biometrics against synthetic forgeries,”

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 60
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Comput. Security, vol. 31, no. 1, pp. 109–121, Feb. 2012.
[9] L. C. F. Araujo, L. H. R. Sucupira, M. Lizarraga, L. Ling,

and J. B. T. Yabu-uti, “User authentication through typing
biometrics features,”IEEE Trans. Signal Process., vol. 53, no.
2, pp. 851–855, Feb. 2005.

[10] S. Joshi, “Naive Bayes and Similarity Based Methods for
Identifying Computer Users Using Keystroke Patterns,”
Ph.D. dissertation, Louisiana Tech University, Ruston, LA,
USA, 2009.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Biometric Functioning.
	2.1 Basic Stage
	2.2 Final Stage
	2.3 Nothing Extra or Type at Logon
	2.4 Flexible Enrolment

	3Background
	Keystroke Latencies:
	Template:
	Outlier Detection:
	Overview of Continuous Verification of Keystroke:

	4Snoop-Forge Replay Attack
	5Creating A Keystroke Forgery
	6 Replaying A Forgery of Victim
	Keystroke Emulator:
	6.1Keystroke Data Collection
	Copy versus self text—
	6.1Zero Effect Imposter Attack
	Extracting Verification Attempts:

	7Prevalence Analyis
	7.1 Misspelling analysis:

	8Equal error rate or Crossover Error rate
	9Conclusion
	Acknowledgment
	References

